3.5.63 \(\int \sqrt {a+b \sinh ^2(e+f x)} \tanh ^4(e+f x) \, dx\) [463]

Optimal. Leaf size=292 \[ -\frac {(7 a-8 b) E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 (a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(3 a-4 b) F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 (a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(7 a-8 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b) f}-\frac {(3 a-4 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b) f}-\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh ^3(e+f x)}{3 f} \]

[Out]

-1/3*(7*a-8*b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(1/2)*EllipticE(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/
2),(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/(a-b)/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)+1/
3*(3*a-4*b)*(1/(1+sinh(f*x+e)^2))^(1/2)*(1+sinh(f*x+e)^2)^(1/2)*EllipticF(sinh(f*x+e)/(1+sinh(f*x+e)^2)^(1/2),
(1-b/a)^(1/2))*sech(f*x+e)*(a+b*sinh(f*x+e)^2)^(1/2)/(a-b)/f/(sech(f*x+e)^2*(a+b*sinh(f*x+e)^2)/a)^(1/2)+1/3*(
7*a-8*b)*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/(a-b)/f-1/3*(3*a-4*b)*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)/(a-
b)/f-1/3*(a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^3/f

________________________________________________________________________________________

Rubi [A]
time = 0.22, antiderivative size = 292, normalized size of antiderivative = 1.00, number of steps used = 7, number of rules used = 7, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.280, Rules used = {3275, 478, 592, 545, 429, 506, 422} \begin {gather*} \frac {(3 a-4 b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} F\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{3 f (a-b) \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {(7 a-8 b) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)} E\left (\text {ArcTan}(\sinh (e+f x))\left |1-\frac {b}{a}\right .\right )}{3 f (a-b) \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}-\frac {\tanh ^3(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f}+\frac {(7 a-8 b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f (a-b)}-\frac {(3 a-4 b) \tanh (e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 f (a-b)} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x]^4,x]

[Out]

-1/3*((7*a - 8*b)*EllipticE[ArcTan[Sinh[e + f*x]], 1 - b/a]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/((a - b
)*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) + ((3*a - 4*b)*EllipticF[ArcTan[Sinh[e + f*x]], 1 - b/a
]*Sech[e + f*x]*Sqrt[a + b*Sinh[e + f*x]^2])/(3*(a - b)*f*Sqrt[(Sech[e + f*x]^2*(a + b*Sinh[e + f*x]^2))/a]) +
 ((7*a - 8*b)*Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x])/(3*(a - b)*f) - ((3*a - 4*b)*Sqrt[a + b*Sinh[e + f*x]
^2]*Tanh[e + f*x])/(3*(a - b)*f) - (Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x]^3)/(3*f)

Rule 422

Int[Sqrt[(a_) + (b_.)*(x_)^2]/((c_) + (d_.)*(x_)^2)^(3/2), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(c*Rt[d/c, 2]*Sq
rt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticE[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /;
FreeQ[{a, b, c, d}, x] && PosQ[b/a] && PosQ[d/c]

Rule 429

Int[1/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[(Sqrt[a + b*x^2]/(a*Rt[d/c, 2]*
Sqrt[c + d*x^2]*Sqrt[c*((a + b*x^2)/(a*(c + d*x^2)))]))*EllipticF[ArcTan[Rt[d/c, 2]*x], 1 - b*(c/(a*d))], x] /
; FreeQ[{a, b, c, d}, x] && PosQ[d/c] && PosQ[b/a] &&  !SimplerSqrtQ[b/a, d/c]

Rule 478

Int[((e_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_), x_Symbol] :> Simp[e^(n - 1
)*(e*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^q/(b*n*(p + 1))), x] - Dist[e^n/(b*n*(p + 1)), Int[(e*x)^
(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^(q - 1)*Simp[c*(m - n + 1) + d*(m + n*(q - 1) + 1)*x^n, x], x], x] /;
FreeQ[{a, b, c, d, e}, x] && NeQ[b*c - a*d, 0] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[q, 0] && GtQ[m - n + 1, 0] &
& IntBinomialQ[a, b, c, d, e, m, n, p, q, x]

Rule 506

Int[(x_)^2/(Sqrt[(a_) + (b_.)*(x_)^2]*Sqrt[(c_) + (d_.)*(x_)^2]), x_Symbol] :> Simp[x*(Sqrt[a + b*x^2]/(b*Sqrt
[c + d*x^2])), x] - Dist[c/b, Int[Sqrt[a + b*x^2]/(c + d*x^2)^(3/2), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b
*c - a*d, 0] && PosQ[b/a] && PosQ[d/c] &&  !SimplerSqrtQ[b/a, d/c]

Rule 545

Int[((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.)*((e_) + (f_.)*(x_)^(n_)), x_Symbol] :> Dist[
e, Int[(a + b*x^n)^p*(c + d*x^n)^q, x], x] + Dist[f, Int[x^n*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a,
b, c, d, e, f, n, p, q}, x]

Rule 592

Int[((g_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_)*((c_) + (d_.)*(x_)^(n_))^(q_)*((e_) + (f_.)*(x_)^(n_)), x
_Symbol] :> Simp[g^(n - 1)*(b*e - a*f)*(g*x)^(m - n + 1)*(a + b*x^n)^(p + 1)*((c + d*x^n)^(q + 1)/(b*n*(b*c -
a*d)*(p + 1))), x] - Dist[g^n/(b*n*(b*c - a*d)*(p + 1)), Int[(g*x)^(m - n)*(a + b*x^n)^(p + 1)*(c + d*x^n)^q*S
imp[c*(b*e - a*f)*(m - n + 1) + (d*(b*e - a*f)*(m + n*q + 1) - b*n*(c*f - d*e)*(p + 1))*x^n, x], x], x] /; Fre
eQ[{a, b, c, d, e, f, g, q}, x] && IGtQ[n, 0] && LtQ[p, -1] && GtQ[m - n + 1, 0]

Rule 3275

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]^2)^(p_.)*tan[(e_.) + (f_.)*(x_)]^(m_), x_Symbol] :> With[{ff = FreeF
actors[Sin[e + f*x], x]}, Dist[ff^(m + 1)*(Sqrt[Cos[e + f*x]^2]/(f*Cos[e + f*x])), Subst[Int[x^m*((a + b*ff^2*
x^2)^p/(1 - ff^2*x^2)^((m + 1)/2)), x], x, Sin[e + f*x]/ff], x]] /; FreeQ[{a, b, e, f, p}, x] && IntegerQ[m/2]
 &&  !IntegerQ[p]

Rubi steps

\begin {align*} \int \sqrt {a+b \sinh ^2(e+f x)} \tanh ^4(e+f x) \, dx &=\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^4 \sqrt {a+b x^2}}{\left (1+x^2\right )^{5/2}} \, dx,x,\sinh (e+f x)\right )}{f}\\ &=-\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh ^3(e+f x)}{3 f}+\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2 \left (3 a+4 b x^2\right )}{\left (1+x^2\right )^{3/2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 f}\\ &=-\frac {(3 a-4 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b) f}-\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh ^3(e+f x)}{3 f}-\frac {\left (\sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {a (3 a-4 b)+(7 a-8 b) b x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 (-a+b) f}\\ &=-\frac {(3 a-4 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b) f}-\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh ^3(e+f x)}{3 f}-\frac {\left (a (3 a-4 b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {1}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 (-a+b) f}-\frac {\left ((7 a-8 b) b \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {x^2}{\sqrt {1+x^2} \sqrt {a+b x^2}} \, dx,x,\sinh (e+f x)\right )}{3 (-a+b) f}\\ &=\frac {(3 a-4 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 (a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(7 a-8 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b) f}-\frac {(3 a-4 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b) f}-\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh ^3(e+f x)}{3 f}+\frac {\left ((7 a-8 b) \sqrt {\cosh ^2(e+f x)} \text {sech}(e+f x)\right ) \text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{\left (1+x^2\right )^{3/2}} \, dx,x,\sinh (e+f x)\right )}{3 (-a+b) f}\\ &=-\frac {(7 a-8 b) E\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 (a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(3 a-4 b) F\left (\tan ^{-1}(\sinh (e+f x))|1-\frac {b}{a}\right ) \text {sech}(e+f x) \sqrt {a+b \sinh ^2(e+f x)}}{3 (a-b) f \sqrt {\frac {\text {sech}^2(e+f x) \left (a+b \sinh ^2(e+f x)\right )}{a}}}+\frac {(7 a-8 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b) f}-\frac {(3 a-4 b) \sqrt {a+b \sinh ^2(e+f x)} \tanh (e+f x)}{3 (a-b) f}-\frac {\sqrt {a+b \sinh ^2(e+f x)} \tanh ^3(e+f x)}{3 f}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains complex when optimal does not.
time = 1.43, size = 214, normalized size = 0.73 \begin {gather*} \frac {-2 i a (7 a-8 b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} E\left (i (e+f x)\left |\frac {b}{a}\right .\right )+8 i a (a-b) \sqrt {\frac {2 a-b+b \cosh (2 (e+f x))}{a}} F\left (i (e+f x)\left |\frac {b}{a}\right .\right )-\frac {\left (8 a^2-12 a b+b^2+4 \left (4 a^2-6 a b+b^2\right ) \cosh (2 (e+f x))+(4 a-5 b) b \cosh (4 (e+f x))\right ) \text {sech}^2(e+f x) \tanh (e+f x)}{2 \sqrt {2}}}{6 (a-b) f \sqrt {2 a-b+b \cosh (2 (e+f x))}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + b*Sinh[e + f*x]^2]*Tanh[e + f*x]^4,x]

[Out]

((-2*I)*a*(7*a - 8*b)*Sqrt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticE[I*(e + f*x), b/a] + (8*I)*a*(a - b)*Sq
rt[(2*a - b + b*Cosh[2*(e + f*x)])/a]*EllipticF[I*(e + f*x), b/a] - ((8*a^2 - 12*a*b + b^2 + 4*(4*a^2 - 6*a*b
+ b^2)*Cosh[2*(e + f*x)] + (4*a - 5*b)*b*Cosh[4*(e + f*x)])*Sech[e + f*x]^2*Tanh[e + f*x])/(2*Sqrt[2]))/(6*(a
- b)*f*Sqrt[2*a - b + b*Cosh[2*(e + f*x)]])

________________________________________________________________________________________

Maple [A]
time = 1.70, size = 366, normalized size = 1.25

method result size
default \(\frac {\left (-4 \sqrt {-\frac {b}{a}}\, a b +5 \sqrt {-\frac {b}{a}}\, b^{2}\right ) \left (\cosh ^{4}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+\left (-4 \sqrt {-\frac {b}{a}}\, a^{2}+10 \sqrt {-\frac {b}{a}}\, a b -6 \sqrt {-\frac {b}{a}}\, b^{2}\right ) \left (\cosh ^{2}\left (f x +e \right )\right ) \sinh \left (f x +e \right )+\sqrt {\frac {\cosh \left (2 f x +2 e \right )}{2}+\frac {1}{2}}\, \sqrt {\frac {b \left (\cosh ^{2}\left (f x +e \right )\right )}{a}+\frac {a -b}{a}}\, \left (3 \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a^{2}-11 \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a b +8 \EllipticF \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b^{2}+7 \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) a b -8 \EllipticE \left (\sinh \left (f x +e \right ) \sqrt {-\frac {b}{a}}, \sqrt {\frac {a}{b}}\right ) b^{2}\right ) \left (\cosh ^{2}\left (f x +e \right )\right )+\left (\sqrt {-\frac {b}{a}}\, a^{2}-2 \sqrt {-\frac {b}{a}}\, a b +\sqrt {-\frac {b}{a}}\, b^{2}\right ) \sinh \left (f x +e \right )}{3 \cosh \left (f x +e \right )^{3} \left (a -b \right ) \sqrt {-\frac {b}{a}}\, \sqrt {a +b \left (\sinh ^{2}\left (f x +e \right )\right )}\, f}\) \(366\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^4,x,method=_RETURNVERBOSE)

[Out]

1/3*((-4*(-1/a*b)^(1/2)*a*b+5*(-1/a*b)^(1/2)*b^2)*cosh(f*x+e)^4*sinh(f*x+e)+(-4*(-1/a*b)^(1/2)*a^2+10*(-1/a*b)
^(1/2)*a*b-6*(-1/a*b)^(1/2)*b^2)*cosh(f*x+e)^2*sinh(f*x+e)+(cosh(f*x+e)^2)^(1/2)*(b/a*cosh(f*x+e)^2+(a-b)/a)^(
1/2)*(3*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*a^2-11*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1
/2))*a*b+8*EllipticF(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b^2+7*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^
(1/2))*a*b-8*EllipticE(sinh(f*x+e)*(-1/a*b)^(1/2),(a/b)^(1/2))*b^2)*cosh(f*x+e)^2+((-1/a*b)^(1/2)*a^2-2*(-1/a*
b)^(1/2)*a*b+(-1/a*b)^(1/2)*b^2)*sinh(f*x+e))/cosh(f*x+e)^3/(a-b)/(-1/a*b)^(1/2)/(a+b*sinh(f*x+e)^2)^(1/2)/f

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^4,x, algorithm="maxima")

[Out]

integrate(sqrt(b*sinh(f*x + e)^2 + a)*tanh(f*x + e)^4, x)

________________________________________________________________________________________

Fricas [F]
time = 0.11, size = 25, normalized size = 0.09 \begin {gather*} {\rm integral}\left (\sqrt {b \sinh \left (f x + e\right )^{2} + a} \tanh \left (f x + e\right )^{4}, x\right ) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^4,x, algorithm="fricas")

[Out]

integral(sqrt(b*sinh(f*x + e)^2 + a)*tanh(f*x + e)^4, x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {a + b \sinh ^{2}{\left (e + f x \right )}} \tanh ^{4}{\left (e + f x \right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)**2)**(1/2)*tanh(f*x+e)**4,x)

[Out]

Integral(sqrt(a + b*sinh(e + f*x)**2)*tanh(e + f*x)**4, x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*sinh(f*x+e)^2)^(1/2)*tanh(f*x+e)^4,x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Evaluation time:
0.62Unable to divide, perhaps due to rounding error%%%{65536,[8,11,11]%%%}+%%%{%%%{-327680,[1]%%%},[8,11,10]%%
%}+%%%{%%%{655

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int {\mathrm {tanh}\left (e+f\,x\right )}^4\,\sqrt {b\,{\mathrm {sinh}\left (e+f\,x\right )}^2+a} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tanh(e + f*x)^4*(a + b*sinh(e + f*x)^2)^(1/2),x)

[Out]

int(tanh(e + f*x)^4*(a + b*sinh(e + f*x)^2)^(1/2), x)

________________________________________________________________________________________